To generate zeros for all input data using Keras Initializers module, you can use the zeros initializer. This initializer generates a tensor filled with zeros, which can be used to initialize the weights or biases of a layer. Here's an example of how to use the zeros initializer to initialize a layer in Keras: python from keras.layers import Dense from keras.initializers import zeros model = Sequential() model.add(Dense( 10 , input_shape=( 5 ,), kernel_initializer=zeros())) In the above example, we create a Dense layer with 10 output units and an input shape of (5,). We use the zeros initializer to initialize the weights of the layer to zero. Note that the zeros initializer can also be used to initialize the biases of a layer by setting the bias_initializer parameter of the layer to zeros() : python model.add(Dense( 10 , input_shape=( 5 ,), kernel_initializer=zeros(), bias_initializer=zeros())) In this case, we set both the weight and bias initializers to zeros .